|    | Context.        | Litterature review. | CAHM Approach. | Summary & Perspectives. | References |
|----|-----------------|---------------------|----------------|-------------------------|------------|
| 00 | 0<br>0<br>00000 |                     | 0000           |                         |            |

# Collaborative alignment of heterogeneous design models

### Saloua BENNANI<sup>1,2</sup>

 $^1$ University of TouLouse Jean Jaures - IRIT Laboratory - SM@RT Team  $^2$ University of Mohammed V in Rabat - ADMIR Laboratory - IMS Team

05 April 2018



| Context.        | Litterature review. | CAHM Approach.         | Summary & Perspectives. | References |
|-----------------|---------------------|------------------------|-------------------------|------------|
| 0<br>0<br>00000 |                     | 00<br>0000<br>00<br>00 |                         |            |

# Contents.

#### Context.

Litterature review.

CAHM Approach.

Summary & Perspectives.

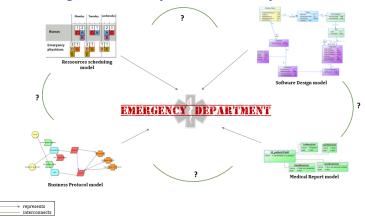


| Context.<br>●<br>○<br>○○○○○ | Litterature review.<br>00<br>0 | <b>CAHM Approach</b> .<br>00<br>0000<br>00 | Summary & Perspectives.<br>0<br>0 | References |
|-----------------------------|--------------------------------|--------------------------------------------|-----------------------------------|------------|
| Definitions                 |                                | 00                                         |                                   |            |

## Complex systems

- A complex system involves interactions between different subsystems (Le Moigne, 1990).
- These subsystems are naturally heterogeneous (coming from different business domains viewpoints).

### Design of complex systems


► Complexity  $\rightarrow$  Separation of concerns principle (Parnas, 1972).  $\rightarrow$  Numerous business domains/DSLs/models...

*Examples: Avionic/robotic/automotive systems, smart cities, emergency departments.* 

| Context.   | Litterature review. | CAHM Approach.         | Summary & Perspectives. | References |
|------------|---------------------|------------------------|-------------------------|------------|
| 0<br>00000 |                     | 00<br>0000<br>00<br>00 |                         |            |

#### Problematic

#### How to manage the whole system consistency??!



Challenge: Building a global view of an Emergency Department!!

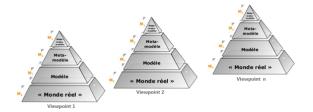
| Context.<br>○<br>○<br>●0000 | <b>Litterature review</b> .<br>00<br>0<br>0 | <b>CAHM Approach</b> .<br>00<br>0000<br>00 | Summary & Perspectives.<br>0<br>0 | References |
|-----------------------------|---------------------------------------------|--------------------------------------------|-----------------------------------|------------|
| Background                  |                                             | 00                                         |                                   |            |

#### Heterogeneous models matching

 Matching/Alignment: finding n-ary correspondences among semantically related concepts to face heterogeneity problems (Shvaiko & Euzenat, 2013).

Correspondence = Elements to link + Semantic Relationship. Example: house home

Semantic relationships definition (e.g. Similarity, Aggregation,

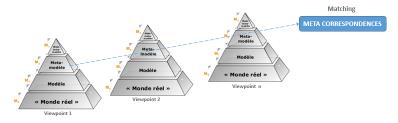

Deduction, etc.)

 A MDE approach to match models (two level mechanism) -AHM Gemoc'14 :(El Hamlaoui *et al.*, 2014)

| Context.<br>○<br>○<br>○●○○○ | Litterature review.<br>00<br>0<br>0 | CAHM Approach.<br>00<br>0000<br>00<br>00 | Summary & Perspectives.<br>0<br>0 | References |
|-----------------------------|-------------------------------------|------------------------------------------|-----------------------------------|------------|
|                             |                                     | 00                                       |                                   |            |

# AHM matching principle (El Hamlaoui et al., 2014)

 Defining meta-correspondences manually. Meta-correspondence = a correspondence between meta-elements.

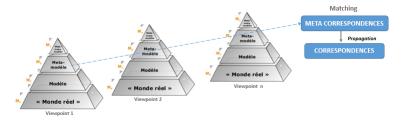



Propagating meta-correspondences: Reproducing them automatically at models level then keeping only those that

| Context.<br>○<br>○<br>○●○○○○ | Litterature review.<br>00<br>0<br>0 | <b>CAHM Approach</b> .<br>00<br>0000<br>00<br>00 | Summary & Perspectives.<br>0<br>0 | References |
|------------------------------|-------------------------------------|--------------------------------------------------|-----------------------------------|------------|
|                              |                                     |                                                  |                                   |            |

# AHM matching principle (El Hamlaoui et al., 2014)

 Defining meta-correspondences manually. Meta-correspondence = a correspondence between meta-elements.

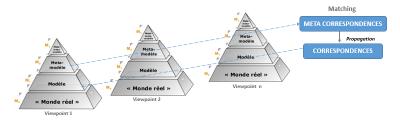



2. Propagating meta-correspondences: **Reproducing** them automatically at models level then **keeping only** those that verify the semantics of the relationship they use.

| Context. | Litterature review. | CAHM Approach. | Summary & Perspectives. | References |
|----------|---------------------|----------------|-------------------------|------------|
|          | 00                  | 00             |                         |            |
|          |                     | 0000           |                         |            |
| 0000     |                     | 00<br>00       |                         |            |

# AHM matching principle (El Hamlaoui et al., 2014)

 Defining meta-correspondences manually. Meta-correspondence = a correspondence between meta-elements.

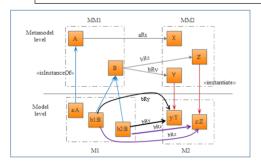



2. Propagating meta-correspondences: **Reproducing** them automatically at models level then **keeping only** those that verify the semantics of the relationship they use.

| Context.     Litterature review.     CAHM Approach.     Summary & Perspectives.       0     00     00     0       0     00     0     0       0     00     0     0       0     0000     0     0       0     0000     0     0 | Refere |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                                                                                                                                                                                             |        |

# AHM matching principle (El Hamlaoui et al., 2014)

 Defining meta-correspondences manually. Meta-correspondence = a correspondence between meta-elements.

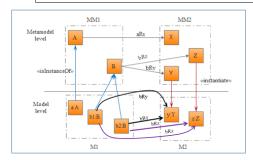


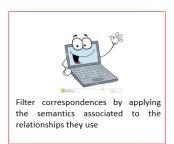

2. Propagating meta-correspondences: **Reproducing** them automatically at models level then **keeping only** those that verify the semantics of the relationship they use.

| Context.<br>○<br>○<br>○○●○○ | Litterature review.<br>00<br>0<br>0 | CAHM Approach.<br>00<br>0000<br>00<br>00 | Summary & Perspectives.<br>0<br>0 | References |
|-----------------------------|-------------------------------------|------------------------------------------|-----------------------------------|------------|
|                             |                                     | 00                                       |                                   |            |

# AHM matching principle (El Hamlaoui et al., 2014)

#### M1C = Propagation (M2C) = Selection (Reproduction (M2C))



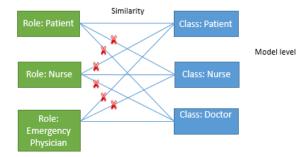


aRx, bRy, bRz: relationships. M2C: model of meta-correspondences M1C: model of correspondences.

| Context.   | Litterature review. | CAHM Approach.         | Summary & Perspectives. | References |
|------------|---------------------|------------------------|-------------------------|------------|
| 0<br>00●00 |                     | 00<br>0000<br>00<br>00 |                         |            |

# AHM matching principle (El Hamlaoui et al., 2014)

#### M1C = Propagation (M2C) = Selection (Reproduction (M2C))






aRx, bRy, bRz: relationships. M2C: model of meta-correspondences M1C: model of correspondences.

| Context.        | Litterature review. | CAHM Approach.         | Summary & Perspectives. | References |
|-----------------|---------------------|------------------------|-------------------------|------------|
| 0<br>0<br>000●0 |                     | 00<br>0000<br>00<br>00 |                         |            |
| Background      |                     |                        |                         |            |

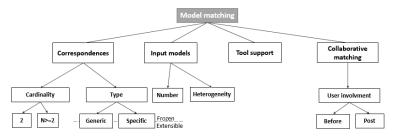
#### AHM matching principle - Illustration (ED System)





| Context.<br>○<br>○<br>○○○○● | Litterature review.<br>00<br>0 | <b>CAHM Approach</b> .<br>00<br>0000<br>00 | Summary & Perspectives.<br>0<br>0 | References |
|-----------------------------|--------------------------------|--------------------------------------------|-----------------------------------|------------|
|                             |                                | ŏŏ                                         |                                   |            |
| Background                  |                                |                                            |                                   |            |

### AHM hypothesis & limitations

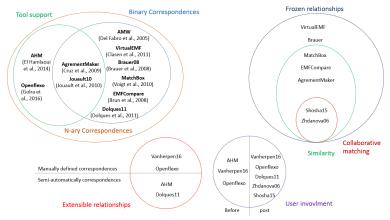

- A centralized approach: one actor (expert)
- Expert:
  - full knowledge: Meta-modeling, Semantic relationships definition, Context and meaning of each meta-concept.

**But...** In real complex systems, such a role could not be found easily, due to the heterogeneity of needed expertise and the separation of concerns principle.

 $\rightarrow$  The matching is rather a collaborative work than an individual one.

| <b>Context</b> .<br>0<br>0<br>00000 | Litterature review.<br>●0<br>○<br>○ | <b>CAHM Approach</b> .<br>00<br>0000<br>00 | Summary & Perspectives.<br>0<br>0 | References |
|-------------------------------------|-------------------------------------|--------------------------------------------|-----------------------------------|------------|
| Model match                         | ing                                 | 00                                         |                                   |            |

### Model matching approaches' classification

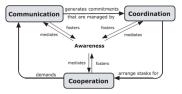





| <b>Context</b> .<br>0<br>0<br>00000 | Litterature review.<br>○●<br>○ | CAHM Approach.<br>00<br>0000<br>00 | Summary & Perspectives.<br>0<br>0 | Referen |
|-------------------------------------|--------------------------------|------------------------------------|-----------------------------------|---------|
|                                     |                                | 00                                 |                                   |         |

#### Model matching

#### details of model matching approaches' classification




| <b>Context</b> .<br>0<br>00000 | Litterature review.<br>○○<br>●<br>○ | <b>CAHM Approach</b> .<br>00<br>0000<br>00<br>00 | Summary & Perspectives.<br>0<br>0 | References |
|--------------------------------|-------------------------------------|--------------------------------------------------|-----------------------------------|------------|
|                                |                                     |                                                  |                                   |            |

#### Collaboration

### Formalization of collaboration = Formalization of:

- Communication: Interlocutors targeting/Data exchange/Communication mechanisms (Lukosch & Schummer, 2008).
- Coordination: People and activities management (Kedji *et al.*, 2014)(Hawryszkiewycz, 2005).
- Cooperation: Group working on a shared space and having a common goal (Bonjour *et al.*, 2009).



 Group decision-making : Strategies choosing/GDM models (Canovas & Cabot, 2013)(Rockwell *et al.*, 2009).

| Context.                          | Litterature review. | CAHM Approach. | Summary & Perspectives. | References |  |
|-----------------------------------|---------------------|----------------|-------------------------|------------|--|
|                                   |                     | 00             |                         |            |  |
| 00000                             | •                   | 00             |                         |            |  |
| Semantic relationships definition |                     |                |                         |            |  |

### Types of semantic relationships

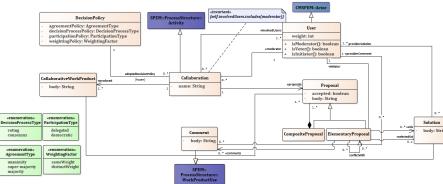
- Causality (Barker & Szpakowicz, 1995) (Bethard et al., 2008) (Chang & Choi, 2006).
- Influence, possession, entailment, purpose, temporal (Moldovan *et al.*, 2004).
- ▶ Part-whole (Artale *et al.* , 1996)(Girju *et al.* , 2006).

► ...

| Context.    | Litterature review.                                    | CAHM Approach. | Summary & Perspectives. | References |  |  |
|-------------|--------------------------------------------------------|----------------|-------------------------|------------|--|--|
|             | 00                                                     | 0              |                         |            |  |  |
|             |                                                        | 0000           |                         |            |  |  |
|             |                                                        |                |                         |            |  |  |
|             |                                                        | 00             |                         |            |  |  |
| MMCollab: A | MMCollab: A metamodel of collaborative decision-making |                |                         |            |  |  |

### Overview

- Collaboration/Collaborative activity.
- Formalization of GDM.
- Decision strategy choosing.
- Tracing proposals, their associated solutions and evaluations.
- Definition of a concrete graphical syntax for MMCollab.






| <b>Context</b> .<br>0<br>00000 | Litterature review.<br>00<br>0<br>0 | CAHM Approach.<br>⊙●<br>○○○○<br>○○ | Summary & Perspectives.<br>0<br>0 | References |
|--------------------------------|-------------------------------------|------------------------------------|-----------------------------------|------------|
|                                |                                     | 00                                 |                                   |            |

MMCollab: A metamodel of collaborative decision-making

#### Details of MMCollab

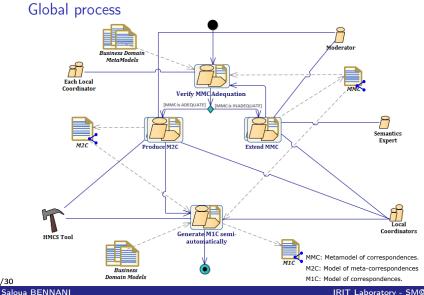


| Context.      | Litterature review.                                   | CAHM Approach. | Summary & Perspectives. | References |  |  |
|---------------|-------------------------------------------------------|----------------|-------------------------|------------|--|--|
|               | 00                                                    | 00             |                         |            |  |  |
|               |                                                       | 0000           |                         |            |  |  |
|               |                                                       | 00             |                         |            |  |  |
|               |                                                       | 00             |                         |            |  |  |
| A collaborati | A collaborative beterogeneous models matching process |                |                         |            |  |  |

## Principle

- Instantiation of MMCollab for matching purpose.
- Two levels matching mechanism in a collaborative way.

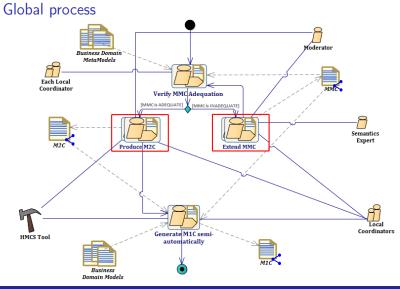
| Context.                                              | Litterature review. | CAHM Approach. | Summary & Perspectives. | References |  |
|-------------------------------------------------------|---------------------|----------------|-------------------------|------------|--|
|                                                       | 00                  | 00             |                         |            |  |
|                                                       |                     | 0000           |                         |            |  |
|                                                       |                     |                |                         |            |  |
|                                                       |                     |                |                         |            |  |
| A collaborative heterogeneous models matching process |                     |                |                         |            |  |


#### Involved actors

- A local coordinator for each design team. He represents his team and manages the model associated to his team's viewpoint.
- A semantics expert who is responsible for implementing the newly defined relationships on the tool.
- A Moderator who manages the collaboration by picking the best decision policy.
- A software tool HMCS to perform automatic tasks.

| Context. | Litterature review. | CAHM Approach. | Summary & Perspectives. | Refere |
|----------|---------------------|----------------|-------------------------|--------|
|          | 00                  | 00             |                         |        |
|          |                     | 0000           |                         |        |
| 00000    |                     | 00             |                         |        |
|          |                     | 00             |                         |        |

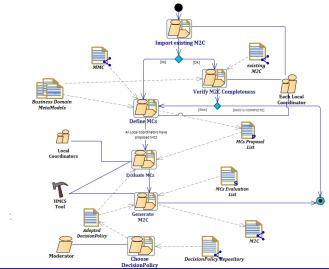
A collaborative heterogeneous models matching process


18/30



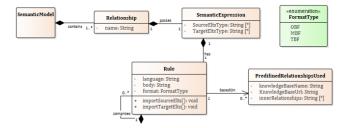
#### IRIT Laboratory - SM@RT Team

| Context. | Litterature review. | CAHM Approach. | Summary & Perspectives. | Referenc |
|----------|---------------------|----------------|-------------------------|----------|
|          | 00                  | 00             |                         |          |
|          |                     | 0000           |                         |          |
| 00000    |                     | 00             |                         |          |
|          |                     | 00             |                         |          |


A collaborative heterogeneous models matching process



| Context. | Litterature review. | CAHM Approach. | Summary & Perspectives. | References |
|----------|---------------------|----------------|-------------------------|------------|
|          |                     |                |                         |            |
|          |                     | 0000           |                         |            |
|          |                     | 00             |                         |            |
|          |                     | 00             |                         |            |


A collaborative heterogeneous models matching process

#### Detailed activity Produce M2C detailed



| Context.        | Litterature review.   | CAHM Approach.         | Summary & Perspectives. | References |
|-----------------|-----------------------|------------------------|-------------------------|------------|
| 0<br>0<br>00000 |                       | 00<br>0000<br>00<br>00 |                         |            |
| Semantic rela   | ationships definition |                        |                         |            |

#### ► A DSL for relationships semantics expression.



| <b>Context</b> .<br>0<br>0<br>00000 | Litterature review.<br>00<br>0<br>0 | CAHM Approach.<br>○○<br>○○○○<br>○● | Summary & Perspectives.<br>0<br>0 | References |
|-------------------------------------|-------------------------------------|------------------------------------|-----------------------------------|------------|
|                                     |                                     |                                    |                                   |            |

#### Semantic relationships definition

Relationship's semantics definition using knowledge bases (wordNet (Pedersen et al., 2004), conceptNet (Liu & Singh, 2004)).

| Relationship{                  |                                      |   |
|--------------------------------|--------------------------------------|---|
| Name: Similarity               | Relationship{                        |   |
| SemanticExpression{            | Name: Induction                      |   |
| SourceEltsType: Any            | SemanticExpression{                  |   |
| TargetEltsType: Any}           | SourceEltsType: Any                  |   |
| Rule{                          | TargetEltsType: Any}                 |   |
| Language: Java                 | Rule{                                |   |
| Body:                          | Language: Java                       |   |
| Format: OBF}                   | Body:                                |   |
| PredefinedRelationshipUsed{    | Format: OBF}                         |   |
| knowledfeBaseName: WordNet     | PredefinedRelationshipUsed{          |   |
| InnerRelationships: Synonyms}  | knowledfeBaseName: ConceptNet        |   |
| PredefinedRelationshipUsed{    | InnerRelationships: HasPrerequisite, | , |
| knowledfeBaseName: ConceptNet  | Entails}                             |   |
| InnerRelationships: Synonym}   | }                                    |   |
| }                              | -                                    | _ |
| InnerRelationships: Synonym} } | }                                    |   |

21/30

| <b>Context</b> .<br>0<br>0<br>00000 | Litterature review.<br>00<br>0<br>0 | CAHM Approach.<br>○○<br>○○○○<br>○○<br>●○ | Summary & Perspectives.<br>0<br>0 | References |
|-------------------------------------|-------------------------------------|------------------------------------------|-----------------------------------|------------|
| A 11                                |                                     |                                          |                                   |            |

#### Application case studies

### CMS: Conference Management System

- 3 viewpoints designed by the same person: Object, Data persistence, Business process
- > Per viewpoint:  $\simeq$  15 models elements /  $\simeq$  10 meta-elements.
- Binary correspondences.
- Evaluation Process: Centralized approach vs Collaborative (performed by PhD Students).
- ► Metrics: precision, recall, f-measure, coverage, time.
- Evaluation Results: Almost similar results (centralized vs collaborative one).
- Analysis:
  - Viewpoints are slightly heterogeneous.
  - Data dictionaries are very close.
  - CMS is a widely known system.

| Context. | Litterature review. | CAHM Approach. | Summary & Perspectives. | References |
|----------|---------------------|----------------|-------------------------|------------|
| 00000    | 000                 | 0000<br>00     |                         |            |
| A        |                     | 00             |                         |            |

### ED: Emergency Department

- 3 viewpoints designed by separate teams: Object, Business process, mock-up (El Hamlaoui *et al.*, 2016).
- Per viewpoint:  $\simeq$  40 models elements /  $\simeq$  10 meta-elements.
- Binary correspondences so far.
- Evaluation Process: Centralized approach vs Collaborative one (performed by PhD Students).
- ► Metrics: precision, recall, f-measure, coverage, time.
- Evaluation Results: Better results in the collaborative approach.
- Analysis:
  - Viewpoints are more heterogeneous than CMS case study.
  - Used Data dictionaries are not close (different designers).

| <b>Context</b> .<br>0<br>0<br>00000 | Litterature review.<br>00<br>0<br>0 | CAHM Approach.<br>00<br>0000<br>00<br>00 | Summary & Perspectives.<br>•<br>• | References |
|-------------------------------------|-------------------------------------|------------------------------------------|-----------------------------------|------------|
| Conclusion                          |                                     |                                          |                                   |            |

### Achieved

Heterogeneous models collaborative matching process. Some semantic relationships definition.

## Ongoing work

Consistency management of the model of correspondences in case of models evolution.

A HMCS tool version supporting collaboration.

### Current challenges

Scalability in case of large systems, real business actors. Satisfaction & collaboration (real business actors). Semantic relationships accuracy & their applicability for various application domains.

| <b>Context</b> .<br>0<br>0<br>00000 | Litterature review.<br>00<br>0<br>0 | <b>CAHM Approach</b> .<br>00<br>0000<br>00<br>00 | Summary & Perspectives.<br>○<br>● | References |
|-------------------------------------|-------------------------------------|--------------------------------------------------|-----------------------------------|------------|
| Publications                        |                                     |                                                  |                                   |            |

#### Accepted:

Saloua Bennani, Mahmoud El Hamlaoui, Mahmoud Nassar, Sophie Ebersold and Bernard Coulette. "*Collaborative model-based matching of heterogeneous models*".CSCWD 2018. *Nanjing, China*.

Mahmoud El Hamlaoui, Saloua Bennani, Mahmoud Nassar, Sophie Ebersold and Bernard Coulette. **"A MDE approach for heterogeneous** *models consistency"*. ENASE 2018. *Madeira, Portugal.* 

#### Submitted for review:

Saloua Bennani, Mahmoud El Hamlaoui, Sophie Ebersold, Mahmoud Nassar and Bernard Coulette. "*Collaborative process for matching heterogeneous models*". ECSCW 2018. *Nancy, France.* 

Saloua Bennani. "Towards a collaborative matching approach to relate sustainable cities design models". ESOF 2018. Toulouse, France.

|                                 | Context.        | Litterature review. | CAHM Approach. | Summary & Perspectives. | References |
|---------------------------------|-----------------|---------------------|----------------|-------------------------|------------|
| 0 0000 0<br>00000 0 00<br>00 00 | 0<br>0<br>00000 |                     | 0000<br>00     |                         |            |

- Artale, Alessandro, Franconi, Enrico, Guarino, Nicola, & Pazzi, Luca.
  1996. Part-whole relations in object-centered systems: An overview.
  Data & Knowledge Engineering, 20(3), 347–383.
- Barker, Ken, & Szpakowicz, Stan. 1995. Interactive semantic analysis of clause-level relationships. *In: Proceedings of the Second Conference of the Pacific Association for Computational Linguistics.*
- Bethard, Steven, Corvey, William J, Klingenstein, Sara, & Martin, James H. 2008. Building a Corpus of Temporal-Causal Structure. *In: LREC*.
- Bonjour, Eric, Belkadi, Farouk, Troussier, Nadege, & Dulmet, Maryvonne. 2009. Modelling interactions to support and manage collaborative decision-making processes in design situations. *International Journal of Computer Applications in Technology*, **36**(3-4), 259–271.
- Canovas, Javier, & Cabot, Jordi. 2013. Enabling the Collaborative Definition of DSMLs. *In: International Conference on Advanced Information Systems Engineering*.

| Context. | Litterature review. | CAHM Approach. | Summary & Perspectives. | References |
|----------|---------------------|----------------|-------------------------|------------|
|          | 00                  | 00             |                         |            |
|          |                     | 0000           |                         |            |
|          |                     |                |                         |            |
|          |                     | 00             |                         |            |

- Chang, Du-Seong, & Choi, Key-Sun. 2006. Incremental cue phrase learning and bootstrapping method for causality extraction using cue phrase and word pair probabilities. *Information processing & management*, **42**(3), 662–678.
- El Hamlaoui, Mahmoud, Trojahn, Cassia, Ebersold, Sophie, & Coulette, Bernard. 2014. Towards an Ontology-based Approach for Heterogeneous Model Matching. *Pages pp–1 of: 2nd International Workshop On the Globalization of Modeling Languages (GEMOC* 2014) co-located with MODELS 2014.
- El Hamlaoui, Mahmoud, Coulette, Bernard, Ebersold, Sophie, Bennani, Saloua, Nassar, Mahmoud, Anwar, Adil, Beugnard, Antoine, Bach, Jean-Christophe, Jamoussi, Yassine, & Tran, Hanh Nhi. 2016. Alignment of viewpoint heterogeneous design models: Emergency Department Case Study. *Pages pp. 18–27 of: 4th International Workshop On the Globalization of Modeling Languages (GEMOC* 2016) co-located with ACM/IEEE MODELS 2016.

| Context. | Litterature review. | CAHM Approach. | Summary & Perspectives. | References |
|----------|---------------------|----------------|-------------------------|------------|
|          | 00                  | 00             |                         |            |
|          |                     | 0000           |                         |            |
|          |                     |                |                         |            |
|          |                     | 00             |                         |            |

- Girju, Roxana, Badulescu, Adriana, & Moldovan, Dan. 2006. Automatic discovery of part-whole relations. *Computational Linguistics*, **32**(1), 83–135.
- Hawryszkiewycz, Igor. 2005. A metamodel for modeling collaborative systems. *Journal of Computer Information Systems*, **45**(3), 63–72.
- Kedji, Komlan Akpédjé, Lbath, Redouane, Coulette, Bernard, Nassar, Mahmoud, Baresse, Laurent, & Racaru, Florin. 2014. Supporting Collaborative Development Using Process Models: A Tool Integration-Focused Approach. Pages 890–909 of: International Conference on Software and System Process - ICSSP 2014.
- Le Moigne, Jean-Louis. 1990. La modélisation des systèmes complexes. *Paris: Bordas, Dunot, 1990.*
- Liu, Hugo, & Singh, Push. 2004. ConceptNetâa practical commonsense reasoning tool-kit. *BT technology journal*, **22**(4), 211–226.
- Lukosch, Stephan, & Schummer, Till. 2008. The Role of Roles in Computer-mediated Interaction. *In: EuroPLoP*.

| Context.        | Litterature review. | CAHM Approach.         | Summary & Perspectives. | References |
|-----------------|---------------------|------------------------|-------------------------|------------|
| 0<br>0<br>00000 |                     | 00<br>0000<br>00<br>00 |                         |            |
|                 |                     |                        |                         |            |

- Moldovan, Dan, Badulescu, Adriana, Tatu, Marta, Antohe, Daniel, & Girju, Roxana. 2004. Models for the semantic classification of noun phrases. *Pages 60–67 of: Proceedings of the HLT-NAACL Workshop on Computational Lexical Semantics*. Association for Computational Linguistics.
- Parnas, David Lorge. 1972. On the criteria to be used in decomposing systems into modules. *Communications of the ACM*, **15**(12), 1053–1058.
- Pedersen, Ted, Patwardhan, Siddharth, & Michelizzi, Jason. 2004.
  WordNet:: Similarity: measuring the relatedness of concepts. *Pages* 38–41 of: Demonstration papers at HLT-NAACL 2004. Association for Computational Linguistics.

| Context. | Litterature review. | CAHM Approach. | Summary & Perspectives. | References |
|----------|---------------------|----------------|-------------------------|------------|
| 0        | 00                  | oo             | 0                       |            |
| 0        | 0                   | ooooo          | 0                       |            |
|          |                     | 00<br>00       |                         |            |

- Rockwell, Justin, Grosse, Ian R, Krishnamurty, Sundar, & Wileden, Jack C. 2009. A Decision Support Ontology for collaborative decision making in engineering design. Pages 1–9 of: Collaborative Technologies and Systems, 2009. CTS'09. International Symposium on. IEEE.
- Shvaiko, Pavel, & Euzenat, Jérôme. 2013. Ontology matching: state of the art and future challenges. *IEEE Transactions on knowledge and data engineering*, **25**(1), 158–176.